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Section 2.3: The Product and Quotient Rules and Higher 
Order Derivatives 

Section 2.4: Chain Rule  
 

Note: The derivative of a product is not the product of the derivatives. 
 
Example 1: Differentiate the function . 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 
 
 
The product rule is used to differentiate the product of two functions. 
 

Product Rule 
 

If , then  
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Example 2: Use the product rule to differentiate the function . 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 
 
 
Example 3: Differentiate the function . 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            █ 
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Example 4: Differentiate the function . 
 
Solution: 
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Example 5: Differentiate the function . 
 
Solution: 
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            █ 
Quotient Rule 

 

If , then  

 

 

 
 
 

 

 
 

Example 6: Differentiate the function . 

 
Solution: 
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Example 7: Differentiate . 
 
Solution: 
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Derivatives of the Other Trigonometric Functions 
 

     

 

       

 
 
Example 8: Differentiate . 
 
Solution: 
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Example 9: Differentiate . 
 
Solution: Since this function is the product of two functions of , we must use the 
product rule. This gives 
 

 

 
Distributing the trigonometric terms gives the result 
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Example 10: Find the equation of the tangent line to the graph of at the point 

(3, 0.3). 
 
Solution: To find the equation any line, including a tangent line, we need the slope and at 
least one point. The point (3, 0.3) is given. To find a formula for calculating the slope of 
the tangent line, we need to find the derivative of the function, which in this case is done 
using the quotient rule. We calculate the derivative and simplify as follows: 
 

 

 
We now find the slope of the tangent line by substituting the x coordinate of the point   
(3, 0.3) into the derivative. This gives 
 

. 

 
Using  and the point (3, 0.3), we solve of the parameter b in the equation of 
the tangent line as follows: 
 

 

          
Hence, the equation of the tangent line is . 
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The Second Derivative 
 
Since the derivative is itself a function, we can calculate its derivative. The derivative of 
the first derivative is known as the second derivative. 
 
Notations for the Second Derivative 
 

        Notations 

  Prime Notations      
 

First        

Derivative  

Notations       

 
 

Second       
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Example 11: Find the second derivative for the function . 
 
Solution: 
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Example 12: Find the second derivative for the function . 

 
Solution: 
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Velocity and Acceleration 
 
Given a position function  
 
Velocity:  
 
Acceleration: Is the rate of change of velocity and is defined to be  
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Example 13: Suppose the equation of motion of a particle is given by the position 
function  where s is in meters and t is in seconds.  
 
a. Find the velocity and acceleration functions as functions of t. 
b. Find the acceleration after 1 second. 
 
Solution: 
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